Genetics of Polyketide Metabolism in Aspergillus nidulans
نویسندگان
چکیده
Secondary metabolites are small molecules that show large structural diversity and a broad range of bioactivities. Some metabolites are attractive as drugs or pigments while others act as harmful mycotoxins. Filamentous fungi have the capacity to produce a wide array of secondary metabolites including polyketides. The majority of genes required for production of these metabolites are mostly organized in gene clusters, which often are silent or barely expressed under laboratory conditions, making discovery and analysis difficult. Fortunately, the genome sequences of several filamentous fungi are publicly available, greatly facilitating the establishment of links between genes and metabolites. This review covers the attempts being made to trigger the activation of polyketide metabolism in the fungal model organism Aspergillus nidulans. Moreover, it will provide an overview of the pathways where ten polyketide synthase genes have been coupled to polyketide products. Therefore, the proposed biosynthesis of the following metabolites will be presented; naphthopyrone, sterigmatocystin, aspyridones, emericellamides, asperthecin, asperfuranone, monodictyphenone/emodin, orsellinic acid, and the austinols.
منابع مشابه
Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development.
Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their pr...
متن کاملIsolation and Characterization of Sexual Spore Pigments from Aspergillus nidulans.
The homothallic ascomycete Aspergillus nidulans produces two types of pigmented spores: conidia and ascospores. The synthesis and localization of the spore pigments is developmentally regulated and occurs in specialized cell types. On the basis of spectroscopic evidence, we propose that the major ascospore pigment of A. nidulans (ascoquinone A) is a novel dimeric hydroxylated anthraquinone. The...
متن کاملConnection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans.
Propionyl-CoA is an intermediate metabolite produced through a variety of pathways including thioesterification of propionate and catabolism of odd chain fatty acids and select amino acids. Previously, we found that disruption of the methylcitrate synthase gene, mcsA, which blocks propionyl-CoA utilization, as well as growth on propionate impaired production of several polyketides-molecules typ...
متن کاملSterigmatocystin biosynthesis in Aspergillus nidulans requires a novel type I polyketide synthase.
A filamentous fungus, Aspergillus nidulans, produces the carcinogenic mycotoxin sterigmatocystin (ST), which is a polyketide-derived secondary metabolite. A gene (pksST) encoding the ST polyketide synthase (PKSst) in A. nidulans was cloned, sequenced, and characterized. Large induced deletion mutants, which did not make ST or any ST intermediates, were used to identify genes associated with ST ...
متن کاملIntimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans.
Fungi produce numerous low molecular weight molecules endowed with a multitude of biological activities. However, mining the full-genome sequences of fungi indicates that their potential to produce secondary metabolites is greatly underestimated. Because most of the biosynthesis gene clusters are silent under laboratory conditions, one of the major challenges is to understand the physiological ...
متن کامل